
Task 100 – Mysterious Letter

This is a very simple implementation task. To solve it we need to do exactly what 
the problem instructs us to – we need to count the number of pairs of same 
letters that contain exactly N letters between them. There are numerous ways to 
implement this, so we will not stick to a particular solution and instead cover 
some tips and common pitfalls:

• While iterating through the input string, we must be careful not to go out of
bounds while looking for a suitable pair

• Since it is stated in the task that the pairs (x, y) and (y, x) are considered to 
be same, we can simply look through the letters that are in front of our 
current index and completely disregard the letters we have already passed

• Ba careful to also cover the case of N being larger than the actual length of 
the array

The time complexity of the solution is O(n).



Task 200 – Endless Run

This task relies on implementing a deterministic finite automaton, with rules for 
its state changes being the mappings from tuples to numbers depicted in the 
problem description. Similar to the previous task, there are many ways to 
implement this so we will once again stick to a couple of pointers that might be of
interest:

• We will begin with calculating the first row of the grid using the initial state 
as a base

• Be careful with implementing the edge cases correctly – improper handing 
might cause array index out of bounds type of errors to occur

• To avoid covering the edge cases with additional conditionals, one possible 
way to not encounter them whatsoever is to increase the number of 
columns of the matrix representing the grid from the task by 2. These will 
be the two outer columns and will be prefilled with 1s so that afterwards 
we can simply apply the rules starting from index 1 to index n.

The time complexity of the solution is O(n ∙ d).



Task 300 – The Perfect Build

As we gather from the problem description, we are required to find the 
combination of weapons bought with our initial gold so that it provides us with 
the highest amount of power with respect to the type of hero we get.

Intuitively, we might consider generating all of the possible combinations (using 
DFS for example), consider the ones that fit the gold restrictions and choose the 
one which provides a highest amount of power. However this is not an option due
to the fact that the number of items can go up to 50, meaning there can be 250 
combinations in the worst case, which is way above the time complexity 
restriction of the problem.

Instead, we can go for a more convenient approach and deduce that the problem 
of finding the best possible combination for our initial sum of gold can be split 
into several subproblems:

Let f(x) represent the maximum amount of power we can attain for x gold, given 
the current items and p(x) represent the power the tuple of attributes x brings 
given our hero’s class type (meaning p(x) changes based on what our hero’s main 
attribute is as explained in the problem).

It is obvious that 

f(n) = max(f(n – c1) + p(a1), f(n – c2) + p(a2), … , f(n – ci) + p(ai))

where ci represents the cost of item i and ai represents a tuple of the attributes 
item i has.

Since the same can be done for all of the subproblems, we can continue in this 
fashion until we run out of gold. At this point we might notice that there are a lot 
of the subprolems that keep repeating themselves (basically lower values of gold 
that are needed to calculate higher amounts of gold), so it should become 
obvious that the optimal solution involves dynamic programming. In particular, 
this is a very textbook version of the Knapsack Problem . In our case, the knapsack
and the amount of weight it can hold is represented by the gold we have, the 
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weight of the items is represented by their cost and the value of each item is 
represented by p(x).

Considering this has now turned into a very straightforward dynamic 
programming problem, we can compute the answer easily. For convenience, we 
may also put the items and their attribute values in a separate data structure and 
instead of calculating how much power each item gives, we can add its attributes 
to our current ones and then apply p(x) on the attribute sums.

The time complexity of the solution is O(N ∙ G), where N represents the number 
of items and G represents the initial amount of gold we get.



Task 400 – Let There Be Light

The fourth task for this round is a difficult and complicated version of a known 
problem – maze traversal. Our maze is 3D and contains switches which are 
connected to each other – flipping a switch triggers the flip of the one that 
follows it as well. 

Since we are required to find the shortest number of steps to turn all of the 
switches on, it is obvious that for traversing through the maze we will use BFS. 

To begin with, let us define all of the states we will need before we begin 
implementing our algorithm:

• x – coordinate of our current position (on the current floor we are on)
• y – coordinate of our current position (on the current floor we are on)
• the floor we are currently on
• the state of each switch (1 for “on” and 0 for “off”)

This means that for this solution we will use a 4-state BFS. Here are some 
additional technical details about the movement and actions we can do in the 3D 
plane:

• Moving left/right or up/down is handled by adjusting the x and y 
coordinates (x for left/right and y for up/down)

• Moving up/down a floor is handled by the third state
• To move vertically we exclusively need to be on a ‘U’ or ‘D’ character on the

current floor we are on
• Stepping on an ‘U’ or ‘D’ character does not mean we need to move 

vertically – we also need to take the other viable neighbours into 
consideration

With this, we have enclosed our movement actions completely and we can move 
anywhere in the house safely as long as we do not hit a wall or go out of walls of 
the house (we need to bear these cases in mind).

The only thing left to do is figure out an efficient way to handle the states of the 
switches. Since there are at most 10 light switches, it is obvious that we have 210 
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combinations when it comes to the fourth state. Since running BFS every time we 
switch a light may result in a lot of iterations of the traversal, that is obviously 
completely out of the question. Instead, we need a structure that allows us to 
quickly switch between states, while retaining our current moves as well as the 
other states (our horizontal and vertical position in the house). 

For this purpose, we can use bitmasks. I will explain the usage here without going
into too much detail, since this topic in itself is worth a separate post.

Shortly, as we mentioned before we can label the light switches that are “on” as 1
and the ones switched “off” as 0. This means that we can represent them as a 
binary string. For example, having 4 lights out of which the first and last ones are 
switched on would render the string “1001”. Now instead of having each state for
the switches have its own string hash (which would increase the complexity by a 
lot when trying to compare states) we may notice that each of these strings can 
be represented as a unique integer. The example mentioned above would be the 
integer 9, only represented binary. We will call this integer a bitmask.

This means that if we can change bits in the bitmask really quickly, we may save 
up a lot of time of computation. One such quick operation is using logical XOR 
combined with bitwise shifting. 

Namely, the operation 1 << x means that we are shifting the number 1 x times, 
which in other words means we are calculating 2x. Now, wanting to invert a 
certain bit in the bitmask would basically mean doing:

bitmask ^= 1 << n

which is the main formula used with bitmasks.

What this does is it shifts the 1 to our wanted position and then performs a 
logical XOR operation. Since all of the other bits in the right hand side of the 
equation are zeros, the only inverted bit would be the nth one, which is exactly 
what we need. 



So to sum up, every time we watch to flip a switch we will perform the bitmask 
operation for i and i + 1, where i is the current switch we are examining (of course
taking into account if i + 1 actually exists or not).

Finally, the terminating states of the search are the following:

• The queue is empty, meaning a solution does not exist 
• We have achieved a bitmask that contains no zeros in its binary 

representation

The second terminating state can be either checked by converting the bitmask to 
binary and comparing it, or by simply comparing it with 2k – 1 (or (1 << k) – 1 for 
short) where k is the total number of switches in the house.

The time complexity of the solution is O(L ∙ W ∙ F ∙ 2S), where L represents the 
length of the house, W represents the width of the house, F represents the 
number of floors in the house and S represents the number of switches in the 
house.



Task 500 – Stairs to Razor Tower

At first sight, this seems like a fairly easy combinatorics problem, however 
because of the very high constraints of n it becomes dramatically more difficult.

If f(n) represents the solution for a given n, then we immediately notice an 
interesting recurrence relation that states:

f(n) = f(n – 1) + f(n – 3)

This is in fact a very famous sequence called Narayana’s cows sequence. With 
regards to it, we will discuss two solutions and their limitations.

Solution 1:

I want to shortly summarize why a combinatorics approach will not work for a 
very large n since a lot of the competitors tried this approach, resulting in 0 
points.

Basically, the solution to the problem would be to find all unique pairs (a, b) such 
that 

a + 3b = 100

where a is the number of 1 steps you do and b is the number of 3 steps you do. 

Notice how for each pair there are multiple ways you can shuffle the order of the 
steps so you get more valid combinations. For example, if n = 4 and we consider 
the pair (1, 3) (which is a valid one), we can either do a 1 step and then a 3 step or
we can do a 3 step and then a 1 step. 

If we represent a certain pair through b, we would get that the pair equals 
(n – 3b, b) and the number of ways to get n – 3b 1 steps and b 3 steps is:

 
(n−2b)!
b!(n−3b)!

http://oeis.org/A000930


Since we can have a maximum of ⌊ N3 ⌋ 3 steps (otherwise we would go over N) 

the total number of ways to get to N would be:

∑
0

⌊N /3⌋ (n−2b)!
b !(n−3 b)!

This agrees with Narayana’s cows sequence as well.

However, this approach is very computation heavy since the large constraints will 
cause multiplications of enormously large numbers. Even if we do optimize as 
much as we can by using tree factorials and by switching the equation around a 
bit we will get nowhere near the desired time complexity for the large inputs.

Solution 2:

We have now realized that we need a solution that is much more optimized and 
much less computation heavy. 

First of all, let’s notice how we can turn the recurrence relation into a matrix 
equation. 

Let us denote an = f(n) (the solution for our problem for n or the nth term in 
Narayana’s cows sequence). We are trying to find a matrix A, such that the 
following figure holds:

1) [an−1anan+1] A = [ anan+1an+2]
The point of this equation is find the value of the next an+2 from the left-hand side 
vector by multiplying it with some constant matrix. 

Since it is obvious from the formula that we simply need to move the values of an 

and an+1 up by one position, the first two columns of A will be (0, 1, 0) and 



(0, 0, 1) (since the first element of the right-hand side vector is the second 
element in the left-hand side vector and the second one in the right side vector is 
the third one in the left-hand side one, hence the zeros in all other positions).
For calculating the value of the third column, we can use our previous recurrence 
formula, so since an+2 = an-1 + an+1 the third column will be (1, 0, 1).

Thus, the value of the matrix is 

We now know that for matrix A, figure 1) holds.

Lemma 1. For an arbitrary number n∈ℕ , the following figure holds:

2) [ anan+1an+2] = [a0a1a2] An

Proof:

We can prove this by simple mathematical induction.

Let us note that vector (a0, a1, a2) equals (1, 1, 1).

1. Let us see if the statement holds for n = 1.

We then have:

[a0a1a2] A = [111] A = [112]



We can calculate that an+2 = 2 by hand, so we can confirm that indeed (an, an+1, 
an+2) = (1, 1, 2) so the figure holds for this step of the induction.

2. Let us assume that for n = k

[ akak+1ak+2] = [a0a1a2] Ak

is valid.

This will serve as our induction hypothesis.

3. If figure 2) is true for n=k, let us show that it is also true for n=k+1:

[ak+1ak+2
ak+3] = [a0a1a2] Ak+1 ⇔ [ak+1ak+2

ak+3] = [a0a1a2] Ak A

If we plug in our induction hypothesis in this equation we will get that

 [ak+1ak+2
ak+3] = [a0a1a2] Ak A  ⇔ [ak+1ak+2

ak+3] = [ akak+1ak+2] A

We know that this is true from figure 1), so we know that figure 2) is true for 
n=k+1 as well. With this, we can conclude our mathematical induction and have 
successfully proved that figure 2) indeed holds.

Considering we already know that a0=a1=a2=1, we can derive from Lemma 1 that 
to find an all we need to do is find An .



At this point we can use the exponentiation by squaring method and get the 
desired matrix in very low time complexity (making sure we use proper modular 
arithmetic along the way to avoid overflow). 

Now since we can get the value of the left-hand vector we can easily see what the
value of an is, which is the solution to our problem.

The time complexity of the solution is O(logn).
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